martes, 30 de septiembre de 2014

Simuladores de red

SIMULADORES DE REDES



-TIPOS DE REDES


  • NEST (Network Simulator Tesbed)
Simulador desarrollado por la Universidad de Colombia fue implementado en lenguaje C para plataformas UNIX, que cuenta con la posibilidad de que el usuario puede ejecutar sus propios comandos en dicho lenguaje, provee al usuario una simulación de redes distribuidas y protocolos básicos, posee una interfaz gráfica para el mejor análisis del resultado de la simulación.


  • MaRS (Maryland Routing Simulator)
Simulador de eventos discretos enfocado al estudio de algoritmos de ruta en redes WAN que surgió en1990 en la Universidad de Maryland y es una evolución del simulador NetSim, está escrito en lenguaje C posee dos interfaces gráficas Xlib y Motif.


  • REAL (Realistic and Large Network Simulator)
Software de carácter libre desarrollado por la Universidad de Cornell cuyo objetivo principal es el de estudiar el comportamiento de flujos y el esquema de control de congestión de redes de datos packet switched, usa lenguaje en C y posee una interfaz grafica denominada GUI. Este software de simulación no permite el estudio de sistemas o parámetros que no afecten en forma directa el flujo de conexiones TCP/IP en consecuencia es muy limitado a la hora de modelar un sistema real.


  • NCTUns 2.0 (Network Simulador/Emulador)
Desarrollado por el profesor S. Y. Wang en la Universidad de Harvard quien presento este simulador para obtener el título de Ph.D. en 1999.
Esta herramienta es tanto un simulador como un emulador el cual utiliza el mismo protocolo TCP/IP de la maquina donde está instalado brindando un mayor desempeño a la simulación, tiene la posibilidad de simular varias clases de redes como son las redes estructuras, WAN wireless, redes OBS entre otros, algunos de los protocolos que soporta están entre otros IEEE 802.11, IEEE 802.3, RIP, UDP, TCP.
Cuenta con una interfaz grafica GUI la que le permite al usuario dibujar y configurar la red deseada.


  • J-SIM (Java Simulator)
Desarrollado por las Universidades de Illinois y Ohio con el patrocinio de NSF, DARPA y CISCO.
J-sim es un simulador de red escrito en Java y posee una interfaz de script para la integración de diferentes lenguajes de script como Perl, Tcl o Python.
Este simulador es muy parecido al NS-2 ya que posee doble lenguaje Java pero realmente usa Jacl que es una extensión de java.


  • S3 (project / Scalable Simulation Framework)
Simulador patrocinado por DAPRA capaz de soportar tanto lenguaje en C++ como Java es altamente escalable y permite prácticamente todos los protocolos de internet, está basado en 5 clases ( Entity, inchannel, outchannel, process y event).
La interacción con la simulación se hace atreves de DML.


  • NS-2 (Network Simulator 2)
Software de carácter libre implementado para la simulación de redes basado en eventos discretos, que surgió a finales de 1980 y cuya base es el simulador de redes ""REAL""; que tiene la capacidad de simular tanto protocolos unicast como multicast, con mayor uso en la investigación de redes móviles ad-hoc, también tiene una gran variedad de protocolos tanto en redes estructuras como en redes wireless.


  • CISCO PACKET TRACER
Software libre implementado para la simulación de redes tanto estructuradas como wireless, fue desarrollado por Cisco Systems, antes de llamarse Cisco Packet Tracer se conocía con el nombre de Routerswork.
Packet Tracer es un simulador que permite la realización y diseño de redes, así como la detección y corrección de errores en sistemas de comunicaciones, además cuenta con la posibilidad de analizar cada proceso que se realiza en el programa de acuerdo al modelo de las capas OSI que puedan intervenir en dicho proceso; razón por la cual es una herramienta muy útil para el proceso de aprendizaje del funcionamiento y configuración de redes.








PARA QUE SE UTILIZA EL SOFTWARE 

PACKET TRACER


CISCO PACKET TRACER

Es la herramienta de aprendizaje y simulación de redes interactiva para los instructores y alumnos de Cisco CCNA. Esta herramienta les permite a los usuarios crear topologías de red, configurar dispositivos, insertar paquetes y simular una red con múltiples representaciones visuales. Packet Tracer se enfoca en apoyar mejor los protocolos de redes que se enseñan en el currículum de CCNA. Este producto tiene el propósito de ser usado como un producto educativo que brinda exposición a la interfaz comando – línea de los dispositivos de Cisco para practicar y aprender por descubrimiento.

Software libre implementado para la simulación de redes tanto estructuradas como wireless, fue desarrollado por Cisco Systems, antes de llamarse Cisco Packet Tracer se conocía con el nombre de Routerswork.
Packet Tracer es un simulador que permite la realización y diseño de redes, así como la detección y corrección de errores en sistemas de comunicaciones, además cuenta con la posibilidad de analizar cada proceso que se realiza en el programa de acuerdo al modelo de las capas OSI que puedan intervenir en dicho proceso; razón por la cual es una herramienta muy útil para el proceso de aprendizaje del funcionamiento y configuración de redes.
Packet Tracer 6.0 es la última versión del simulador de redes de Cisco Systems, herramienta fundamental si el alumno está cursando el CCNA o se dedica al networking. En este programa se crea la topología física de la red simplemente arrastrando los dispositivos a la pantalla. Luego clickando en ellos se puede ingresar a sus consolas de configuración. Allí están soportados todos los comandos del Cisco OS e incluso funciona el "tab completion". Una vez completada la configuración física y lógica de la net, también se puede hacer simulaciones de conectividad (pings, traceroutes, etc) todo ello desde las misma consolas incluidas.
Una de las grandes ventajas de utilizar este programa es que permite "ver" (opción "Simulation") cómo deambulan los paquetes por los diferentes equipos (switchs, routers, etc), además de poder analizar de forma rápida el contenido de cada uno de ellos en las diferentes "capas".







VENTANA DE PACKET TRACER



(PARTES)


.1.-Es  nuestro espacio de trabajo se convertirá en un mapa para poder trabajar en ella.

2-La barra de herramientas, poseen las opciones básicas y tradicionales de un software como archivo, vista, ayuda, opciones, edición, herramientas, etc. De los cuales están guardar, abrir archivo, regresar, adelantar, zoom, imprimir, etc.

3.-Tenemos opciones básicas y rápidas para el modelado, como Borrar (equis), enviar archivo (carta), Zoom rápido (Lupa), Coger (la manita), seleccionar (cuadro punteado).

4.-El modo a escoger de cómo visualizar el envío de un archivo en nuestra simulación, tenemos en tiempo real, y en vista simulada.

5.-Nos muestra los resultados de la simulación, si el mensaje fue entregado con éxito o no, funciona en ambos modos de visualización.

6.-La gama de opciones según nuestro menú de implemento de nuestra simulación de red, ejemplo si escogemos routers en nuestro menú, en esta sección de gama de opciones tendremos diferentes tipos de routers que se puedan utilizar.

7.-Menú de implemento de la simulación de red. tenemos implemento como routers cables de conexión, switches, multiuser conection, End Divices, wireless Divices, etc.

8.-Es  el espacio donde se modelara y trabajara la simulación de red.








VENTAJAS DE PACKET TRACER





DESVENTAJAS DE PACKET TRACER










Reglas de Interconexión de Dispositivos

Para realizar una interconexión correcta debemos tener en cuenta las siguientes reglas:





    Cable Recto: Siempre que conectemos dispositivos que funcionen en diferente capa del modelo OSI se debe utilizar cable recto (de PC a Switch o Hub, de Router a Switch).


Cable Cruzado: Siempre que conectemos dispositivos que funcionen en la misma capa del modelo OSI se debe utilizar cable cruzado (de PC a PC, de Switch/Hub a Switch/Hub, de Router a Router).



Interconexión de Dispositivos


     Una vez que tenemos ubicados nuestros dispositivos en el escenario y sabemos que tipo de medios se utilizan entre los diferentes dispositivos lo único que nos faltaría sería interconectarlos. Para eso vamos al panel de dispositivos y seleccionamos “conecciones” y nos aparecerán todos los medios disponibles.





   Una vez que seleccionamos el medio para interconectar dos dispositivos y vamos al escenario el puntero se convierte en un conector. Al hacer clic en el dispositivo nos muestra las interfaces disponibles para realizar conexiones, hacemos clic en la interface adecuada y vamos al dispositivo con el cual queremos conectar y repetimos la operación y quedan los dispositivos conectados.











TIPOS DE SWITCHES EN PACKET TRACER
 












TIPOS DE MODEM EN PACKET TRACER
 
 







DISPOSITIVOS INALAMBRICOS
 







DISPOSITIVOS TERMINALES
 









DISPOSITIVOS ADICIONALES







martes, 23 de septiembre de 2014

Tipos de cables usados en redes alambicas y tecnicas de transmisión de datos en redes inalambricas

Tipos de cables usados en redes alambicas
Actualmente en el sector de las LAN (Local Area Network, Redes de Área Local) se utilizan diversos tipos de cableado de red, el más común es el de Categoría 5e/CAT. 5e (Categoría 5 Enhanced, Categoría 5 Mejorada) que: Tiene una frecuencia de hasta 100 Mhz y puede soportar hasta Gigabit Ethernet (10/1000/1000, es decir hasta 1.000 Mbps, unos 125 MB/seg). El cable de CAT.5e, es una revisión del antiguo cable de Categoría 5, sin embargo actualmente también se comercializan cables.

  • UTP (Unshielded Twisted Pair, Par Trenzado Sin apantallar): Son cables de pares trenzados sin apantallar (Son más flexibles que los cables apantallados), se utilizan para diferentes tecnologías de red local. Su coste en comparación con otros cables de red es menor pero producen más errores que otros tipos de cable al no estar apantallados en caso de existir algún tipo de interferencia, además tienen limitaciones para trabajar a grandes distancias sin regeneración de la señal.

Cable UTP


  • S/UTP (Screened Shielded Twisted Pair): Es un cable UTP que tiene una malla metálica protectora que ayuda a reducir las interferencias próximas al cable. Los cables S/UTP, también es conocido como FTP (Foiled Twisted Pair, Par trenzado con pantalla global) o ScTP (Screened UTP Cable).




STP
  • STP (Shielded Twisted Pair, Par Trenzado Apantallado):  Los cables (Par de cobre) están aislados dentro de una cubierta protectora, esta cubierta hace que el cable sea algo más rígido que el UTP. Se utiliza en redes de ordenadores como Ethernet o Token Ring. Es más caro que el cable UTP no apantallado.



S/STP
  • S/STP (Screened shielded twisted pair): Es un cable que además de la protección del STP, añade una malla metálica que ayuda a reducir las interferencias proximas al cable. Este tipo de cable tambien se denomina también S/FTP: Screened Fully shielded Twisted Pair.











-Técnicas de transmisión de datos en redes inalambricas




Radio

La radio es un medio inalámbrico que transfiere datos a través de ondas electromagnéticas de baja frecuencia a lugares distantes mediante un conductor eléctrico y una antena. La frecuencia de transmisión -o velocidad  de viaje y procesamiento de los datos- para la información transmitida mediante un sistema de radio oscila entre los 10 kilohertz (kHz) a 1 gigahertz (GHz), y las frecuencias son reguladas por la Comisión Federal de Comunicaciones (FCC, por sus siglas en inglés). A veces, las ondas electromagnéticas tienen interferencias en caso de las obstrucciones tales como montañas o en ubicaciones de recepción muy lejanas a la señal de la radio. Así, en dichas circunstancias, se inhabilita la frecuencia.

Tipos de transmisión inalámbrica de datos


Microondas

Un tipo eficaz de transmisión inalámbrica de datos es la del microondas, la cual permite que la información viaje usando dos métodos individuales. Uno de ellos es el método terrestre, que usa dos torres de microondas con un campo de visión claro entre ellas; por lo tanto, no hay obstáculos para interrumpir dicho campo visual. Generalmente utilizados para garantizar la intimidad, la frecuencia de transmisión de datos de los sistemas terrestres es 4 GHz a 6 GHz o 21 GHz a 23 GHz, mientras que la velocidad suele ser de 1 megabit por segundo (Mbps) a 10 Mbps. Otro de los métodos utilizados para transmitir datos mediante el medio inalámbrico del microondas es el del satélite, que transmite información vía un satélite que gira 22.300 millas (35.888 km) por sobre la Tierra. Las estaciones terrestres envían y reciben señales de datos hacia y desde el satélite con una frecuencia que oscila desde los 11 GHz a 14 GHz, y con una velocidad de transmisión de 1 Mbps a 10 Mbps.
Infrarrojo
El infrarrojo es un medio de sistema de transmisión que transmite señales de datos mediante diodos de emisión de luz (LEDs, o lásers). Sin embargo, en el sistema infrarrojo, la información no puede viajar a través de obstáculos y puede ser impedido por la luz. Un tipo de infrarrojo es el sistema punto a punto, que incluye una transmisión entre dos puntos limitados a un rango de campo de visión. Dicho método es propicio para la privacidad y la prevención de espionajes. La frecuencia de señal de transmisión en el sistema punto a punto es de 100 GHz a 1000 terahertz (THz), y la velocidad oscila entre 100 Kbps a 16 Mbps. Otro tipo de infrarrojo incluye el sistema de emisión en el cual un material reflexivo o unidad de transmisión se amplifica y retransmite una señal de datos para dispersar la señal, para que otras señales también puedan recibir la señal en cuestión. Con una velocidad limitada de 1 Mbps, la frecuencia usual de un sistema de emisión infrarrojo es de 100 GHz a 1000 THz.

Topologias de redes

*BUS
La topología Bus en cuanto a redes consta de un cable largo al cual se le van conectando las computadoras. Esto es parte también de la tecnología informática que se ha ido desarrollando en el mundo actual.


Ventajas de la topología Bus:


● Es muy sencillo el trabajo que hay que hacer para agregar una computadora a la red.

● Si algo se daña, o si una computadora se desconecta, esa falla es muy barata y fácil de arreglar.

● Es muy barato realizar todo el conexionado de la red ya que los elementos a emplear no son costosos.

● Los cables de Internet y de electricidad pueden ir juntos en esta topología.


Esquema de la topología red bus o lineal


Desventajas de la topología Bus:

● Si un usuario desconecta su computadora de la red, o hay alguna falla en la misma como una rotura de cable, la red deja de funcionar.

● Las computadoras de la red no regeneran la señal sino que se transmite o es generada por el cable y ambas resistencias en los extremos

● En esta topología el mantenimiento a través del tiempo que hay que hacer es muy alto (teniendo en cuenta el esfuerzo de lo que requiere la mano de obra).

● La velocidad en esta conexión de red es muy baja.



-ANILLO

La topología anillo es la más vieja de todas pero en algunos lugares se sigue usando.

Ventajas de la topología anillo:

● Fácil de instalar y reconfigurar.

● Para añadir o quitar dispositivos , solamente hay que mover dos conexiones.

● Arquitectura muy compacta, y muy pocas veces o casi nunca tiene conflictos con los otros usuarios.

● La conexión provee una organización de igual a igual para todas las computadoras.

● El rendimiento no se declina cuando hay muchos usuarios conectados a la red.

Esquema de la topología de red anillo


Desventajas de la topología anillo:

● Restricciones en cuanto a la longitud del anillo y también en cuanto a la cantidad de dispositivos conectados a la red.

● Todas las señales van en una sola dirección y para llegar a una computadora debe pasar por todas las del medio.

● Cuando una computadora falla, altera a toda la red.




-ESTRELLA

La topología estrella es una de las más recientes o la que se usa más en la actualidad. En las primeras topologías de estrella el HUB tenía entradas coaxil, no RJ45. En el pasado, se usaba el HUB en vez del SWITCH.

Estas son las principales ventajas y desventajas de la topología de red Estrella.

Ventajas de la Topología Estrella:

● A comparación de las topologías Bus yAnillo, si una computadora se daña el cable se rompe, las otras computadoras conectadas a la red siguen funcionando.

● Agregar una computadora a la red es muy fácil ya que lo único que hay que hacer es conectarla al HUB o SWITCH.

● Tiene una mejor organización ya que al HUB o SWITCH se lo puede colocar en el centro de un lugar físico y a ese dispositivo conectar todas las computadoras deseadas.


Topología Estrella Esquema


Desventajas de la Topología Estrella:

● No es tan económica a comparación de la topología Bus o Anillo porque es necesario más cable para realizar el conexionado.

● Si el HUB o SWITCH deja de funcionar, ninguna de las computadoras tendrá conexión a la red.

● El número de computadoras conectadas a la red depende de las limitaciones del HUB o SWITCH.

La topología Estrella nació gracias a la tecnología informática. Es una de las mejores sin lugar a dudas debido a su organización.


-ÁRBOL
La Topología de árbol es aquella topología de red en la que los nodos están colocados en forma de árbol. La conexión en árbol es parecida a una serie de redes en estrella interconectadas a diferencia de que no tienen nodo central. Tiene un nodo de enlace troncal, generalmente ocupado por un hub o switch, desde el que se ramifican los demás nodos.
La falla de un nodo no implica interrupción en las comunicaciones. Se comparte el mismo canal de comunicaciones. La topología de árbol combina características de la topología de estrella con la BUS. Consiste en un conjunto de subredes estrella conectadas a un BUS. Esta topología facilita el crecimiento de la red.
Los problemas asociados a las topologías anteriores radican en que los datos son recibidos por todas las estaciones sin importar para quien vayan dirigidos lo que puede producir interferencia entre las señales cuando dos o más estaciones transmiten al mismo tiempo. Por lo que hay que establecer un identificador de estación destino y mantener la cooperación entre todas las estaciones.

 
La Topología de Árbol presenta distintas ventajas y desventajas, entre las cuales caben mencionar:

Ventajas
  • Cableado punto a punto para segmentos individuales.
  • Soportado por multitud de vendedores de software y de hardware.

Desventajas
  • La medida de cada segmento viene determinada por el tipo de cable utilizado.
  • Si se viene abajo el segmento principal todo el segmento se viene abajo con él.
  • Es más difícil su configuración.




-TELARAÑA
Las topologías de telaraña están inmediatamente con el concepto de rutas. A diferencia de todas las topologías anteriores, los mensajes enviados en una red de telaraña pueden tomar cualquiera de las muchas rutas posibles para llegar a su destino.
Algunos WANs (Redes de Cobertura Amplia), como el internet emplean las rutas de telaraña. En cada parte de la telaraña existe un equipo de cómputo el cual recibe y envía información.

Ventajas.
·         La ventaja de esta topología es la fiabilidad frente a fallas, si una computadora falla no afecta a las demás, tiene grandes posibilidades de reconfiguración y permite tráficos elevados de información con retardos pequeños.

viernes, 19 de septiembre de 2014

Métodos de transmisión de datos

A) SEGÚN LA MANERA DE LA TRANSMISIÓN.


-BANDA BASE: se refiere a la banda de frecuencias producida por un transductor, tal como un micrófono, un manipulador telegráfico u otro dispositivo generador de señales que no es necesario adaptarlo al medio por el que se va a trasmitir.
Banda base es la señal de una sola transmisión en un canal, banda ancha significa que lleva más de una señal y cada una de ellas se transmite en diferentes canales, hasta su número máximo de canal.
En los sistemas de transmisión, la banda base es generalmente utilizada para modular una portadora. Durante el proceso de de modulación se reconstruye la señal banda base original. Por ello, podemos decir que la banda base describe el estado de la señal antes de la modulación y de modulación.
Las frecuencias de banda base se caracterizan por ser generalmente mucho más bajas que las resultantes cuando éstas se utilizan para modular una portadora o subportadora. Por ejemplo, es señal de banda base la obtenida de la salida de vídeo compuesto de dispositivos como grabadores/reproductores de vídeo y consolas de juego, a diferencia de las señales de televisión que deben ser moduladas para poder transportarlas vía aérea (por señal libre o satélite) o por cable.
En transmisión de facsímil, la banda base es la frecuencia de una señal igual en ancho de banda a la comprendida entre la frecuencia cero y la frecuencia máxima de codificación. En otras palabras, si el espectro de frecuencia de una señal se localiza alrededor de la frecuencia f = 0 Hz, se dice que la señal es de “banda base”.





-BANDA ANCHA: Se conoce como banda ancha a la red (de cualquier tipo) que tiene una elevada capacidad para transportar información que incide en la velocidad de transmisión de ésta. Así entonces, es la transmisión de datos simétricos por la cual se envían simultáneamente varias piezas de información, con el objeto de incrementar la velocidad de transmisión efectiva. En ingeniería de redes este término se utiliza también para los métodos en donde dos o más señales comparten un medio de transmisión. Así se utilizan dos o más canales de datos simultáneos en una única conexión, lo que se denomina multiplexación (véase sección más abajo).
Algunas de las variantes de los servicios de Fiber To The Home son de banda ancha. Los routers que operan con velocidades mayores a 100 Mbit/s también son banda ancha, pues obtienen velocidades de transmisión simétricas.
El concepto de banda ancha ha evolucionado con los años. La velocidad que proporcionaba RDSI con 128 Kb/s dio paso al SDSL con una velocidad de 256 Kb/s. Posteriormente han surgido versiones más modernas y desarrolladas de este último, llegando a alcanzar desde la velocidad de 512 Kb/s hasta los 150 Mb/s simétricos en la actualidad.




B) SEGÚN LA INFORMACIÓN:

-ASÍNCRONA: La transmisión asincrona lugar cuando el proceso de sincronización entre emisor y receptor se realiza en cada palabra de código transmitido. Esta sincronización se lleva a cabo a través de unos bits especiales que definen el entorno de cada código.
También se dice que se establece una relación asíncrona cuando no hay ninguna relación temporal entre la estación que transmite y la que recibe. Es decir, el ritmo de presentación de la información al destino no tiene por qué coincidir con el ritmo de presentación de la información por la fuente. En estas situaciones tampoco se necesita garantizar un ancho de banda determinado, suministrando solamente el que esté en ese momento disponible. Es un tipo de relación típica para la transmisión de datos.
En este tipo de red el receptor no sabe con precisión cuando recibirá un mensaje. Cada carácter a ser transmitido es delimitado por un bit de información denominado de cabecera o de arranque, y uno o dos bits denominados de terminación o de parada.
  • El bit de arranque tiene dos funciones de sincronización de reloj del transmisor y del receptor.
  • El bit o bits de parada, se usan para separar un carácter del siguiente.
Después de la transmisión de los bits de información se suele agregar un bit de paridad (par o impar). Dicho Bit sirve para comprobar que los datos se transfieran sin interrupción. El receptor revisa la paridad de cada unidad de entrada de datos.
Partiendo desde la línea de transmisión en reposo, cuando tiene el nivel lógico 1, el emisor informa al receptor de que va a llegar un carácter, para ello antepone un bit de arranque (Start) con el valor lógico 0. Una vez que el bit Start llega al receptor este disparará un reloj interno y se quedará esperando por los sucesivos bits que contendrá la información del carácter transmitido por el emisor.
Una vez que el receptor recibe todos los bits de información se añadirá al menos un bit de parada (Stop) de nivel lógico 1, que repondrán en su estado inicial a la línea de datos, dejándola así preparada para la siguiente transmisión del siguiente carácter. Es usada en velocidades de modulación de hasta 1,200 baudios. El rendimiento se basa en el uso de un bit de arranque y dos de parada, en una señal que use código de 7 bits más uno de paridad (8 bits sobre 11 transmitidos) es del 72 por 100.





-SINCRONA
es una técnica que consiste en el envío de una trama de datos (conjunto de caracteres) que configura un bloque de información comenzando con un conjunto de bits de sincronismo (SYN) y terminando con otro conjunto de bits de final de bloque (ETB). En este caso, los bits de sincronismo tienen la función de sincronizar los relojes existentes tanto en el emisor como en el receptor, de tal forma que estos controlan la duración de cada bit y carácter.
Dicha transmisión se realiza con un ritmo que se genera centralizada mente en la red y es el mismo para el emisor como para el receptor. La información se transmite entre dos grupos, denominados delimitadores (8 bits).






C) SEGÚN EL MEDIO DE TRANSMISIÓN 


-SERIE
En una conexión en serie, los datos se transmiten de a un bit por vez a través del canal de transmisión. Sin embargo, ya que muchos procesadores procesan los datos en paralelo, el transmisor necesita transformar los datos paralelos entrantes en datos seriales y el receptor necesita hacer lo contrario.
Conexión en serie
Estas operaciones son realizadas por un controlador de comunicaciones (normalmente un chip UARTUniversal Asynchronous Receiver Transmitter (Transmisor Receptor Asincrónico Universal)). El controlador de comunicaciones trabaja de la siguiente manera:
  • La transformación paralela-en serie se realiza utilizando un registro de desplazamiento. El registro de desplazamiento, que trabaja conjuntamente con un reloj, desplazará el registro (que contiene todos los datos presentados en paralelo) hacia la izquierda y luego, transmitirá el bit más significativo (el que se encuentra más a la izquierda) y así sucesivamente:
    transformación paralela-en serie
La transformación en serie-paralela se realiza casi de la misma manera utilizando un registro de desplazamiento. El registro de desplazamiento desplaza el registro hacia la izquierda cada vez que recibe un bit, y luego, transmite el registro entero en paralelo cuando está completo:
transformación en serie-paralela

-PARALELO
Las conexiones paralelas consisten en transmisiones simultáneas de N cantidad de bits. Estos bits se envían simultáneamente a través de diferentes canales N(un canal puede ser, por ejemplo, un alambre, un cable o cualquier otro medio físico). La conexión paralela en equipos del tipo PC generalmente requiere 10 alambres.
Conexión paralela
Estos canales pueden ser:
  • N líneas físicas: en cuyo caso cada bit se envía en una línea física (motivo por el cual un cable paralelo está compuesto por varios alambres dentro de un cable cinta)
  • una línea física dividida en varios subcanales, resultante de la división del ancho de banda. En este caso, cada bit se envía en una frecuencia diferente...
Debido a que los alambres conductores están uno muy cerca del otro en el cable cinta, puede haber interferencias (particularmente en altas velocidades) y degradación de la calidad en la señal...


D) SEGÚN LAS SEÑALES TRANSMITIDAS

-TRANSMISIÓN ANALÓGICA
La transmisión analógica que datos consiste en el envío de información en forma de ondas, a través de un medio de transmisión físico. Los datos se transmiten a través de una onda portadora: una onda simple cuyo único objetivo es transportar datos modificando una de sus características (amplitud, frecuencia o fase). Por este motivo, la transmisión analógica es generalmente denominada transmisión de modulación de la onda portadora. Se definen tres tipos de transmisión analógica, según cuál sea el parámetro de la onda portadora que varía:
  • Transmisión por modulación de la amplitud de la onda portadora
  • Transmisión a través de la modulación de frecuencia de la onda portadora
  • Transmisión por modulación de la fase de la onda portadora

Transmisión analógica de datos analógicos

Este tipo de transmisión se refiere a un esquema en el que los datos que serán transmitidos ya están en formato analógico. Por eso, para transmitir esta señal, el DCTE (Equipo de Terminación de Circuito de Datos) debe combinar continuamente la señal que será transmitida y la onda portadora, de manera que la onda que transmitirá será una combinación de la onda portadora y la señal transmitida. En el caso de la transmisión por modulación de la amplitud, por ejemplo, la transmisión se llevará a cabo de la siguiente forma:

-TRANSMISIÓN DIGITAL
La transmisión digital consiste en el envío de información a través de medios de comunicaciones físicos en forma de señales digitales. Por lo tanto, las señales analógicas deben ser digitalizadas antes de ser transmitidas.
Sin embargo, como la información digital no puede ser enviada en forma de 0 y 1, debe ser codificada en la forma de una señal con dos estados, por ejemplo:
  • dos niveles de voltaje con respecto a la conexión a tierra
  • la diferencia de voltaje entre dos cables
  • la presencia/ausencia de corriente en un cable
  • la presencia/ausencia de luz
  • ...
Esta transformación de información binaria en una señal con dos estados se realiza a través de un DCE, también conocido como decodificador de la banda base: es el origen del nombre transmisión de la banda base que designa a la transmisión digital...

Transmisión digital (banda base)